Permutation group
-- set of permutations of k elements
def S k := {π : {1, ..., k} : one-to-one π}
-- easy to compute cardinality:
lemma : |S k| = k! := sorry
-
Important group;
-
Every finite group is subgroup of permutation group.
-
The Clifford group is a finite group.
-
-- cycle notation
-- example for k = 5
notation π = (1 3 5) (2 4) means
example : π(1) = 3 := refl
example : π(3) = 5 := refl
example : π(5) = 1 := refl
example : π(2) = 4 := refl
-- simple lemma
lemma : ⟨(1 2 ... k), (1 2)⟩ = S k :=
begin
-- first step : 2-cycles generate S k, i.e., ⟨ {(i j)}_i < j ⟩ = S k
-- Note: Inverse of a cycle is always a power of a cycle.
end