Convert quantum state with catalyst

system S. in state ρ. can we Convert state to ρ’?

when does there exist a unitary on system S and system C (“catalyst”) so state of S changes from ρ to ρ’?

Entanglement transformations are irreversible under non-entangling operations.

Quantum entropy

/-- U brings ρ ε-close to ρ'. But leaves σ unchanged -/
def reachable_by_catalysis (ε : ℝ) [quantum_state ρ ρ'] :=
∃ [quantum_state σ] [unitary U],
D(Tr₂(U * (ρ ⊗ σ) * U†), ρ') ≤ ε
∧
Tr₁(U * (ρ ⊗ σ) * U†) = σ

notation ρ `→ε` ρ' := approx_cat_trans

/-- Thm. 2 -/
theorem reachable_by_catalysis_iff_higher_entropy :
  (∀ ε>0, reachable_by_catalysis ε ρ ρ') ↔ H(ρ) ≤ H(ρ') := 
begin
  split,
  { -- 1st direction: reachable_by_catalysis ρ ρ' → H(ρ) ≤ H(ρ')
    -- U acts on ρ and σ
    let ρσ' := U * (ρ ⊗ σ) * U†,
    -- discard σ
    let ρ'ε := Tr₂ ρσ',
    calc H(ρ'ε) + H(σ) ≥ H(ρσ')               -- entropy_subadditive
                  ... = H(U * (ρ ⊗ σ) * U†)   -- def of ρ'ε
                  ... = H(ρ ⊗ σ)              -- entropy_same_after_unitary
                  ... = H(ρ) + H(σ)           -- entropy_tmul_eq_add_entropy
    -- so H(ρ'ε) ≥ H(ρ)
  },
  { -- 2nd direction: H(ρ) ≤ H(ρ') → reachable_by_catalysis ρ ρ'

    -- can reach ρ' using two catalysts

    -- the first catalyst σ₁ consists of copies of S: S₂, ..., Sₙ and an auxiliary system A
    let χ := U * ρ^⊗n * U†,
    σ₁ = 1/n * ∑k, ρ^⊗{k-1} ⊗ χ{1,..,n-k} ⊗ |k⟩⟨k|A,
    -- χ{1,..i} is χ reduced on subsystems 1 to i.
    -- We define χ₀ = ρ^⊗⁰ = 1.

    /- do unitaries on ρ ⊗ σ₁:
    U₁ := U ⊗ |n⟩⟨n| + 1 ⊗ ∑k, |k⟩⟨k|, with U the unitary from lemma 5.
    U₂ := cyclic shift of subsystems Sᵢ → Sᵢ₊₁ with Sₙ → S₁.
    U₃ := cyclic shift on A, acting on |i⟩ → |i+1⟩ with |n+1⟩ = |1⟩ -/
    let Uₜ := U₃ * U₂ * U₁,

    /- The catalyst is back to σ₁ -/
    have : Tr₁(Uₜ * (ρ ⊗ σ₁) * Uₜ†) = σ₁, { sorry },

    /- System S is in χ' := 1/n * ∑ k, χₖ -- where χₖ = pTr_k' χ -/
    have : Tr₂(Uₜ * (ρ ⊗ σ₁) * Uₜ†) = χ', { sorry },

    -- the second catalyst is a src of randomness R
    -- dilates the dephasing on S so correlates not to S₂, ..., Sₙ and A

    -- After dephasing with R:
    have : D(1/n * ∑ k, 𝒟 ρ'[χₖ], ρ') ≤ ε, {
      D(1/n * ∑ k, 𝒟 ρ'[χₖ], ρ') ≤ 1/n ∑ k, D(𝒟 ρ'[χₖ], ρ') -- by triangle ineq
                             ... ≤ ε                        -- by Lemma 5
    },
  },
end
/-- mixed unitary channel -/
def 𝒞 (ρ) [rnd_var p] [V : ι → unitary] :=
∑ i, pᵢ * Vᵢ * ρ * Vᵢ†

/-- dilated mixed unitary channel -/
def σ := ∑ i, pᵢ |i⟩⟨i|
def V := ∑ i, Vᵢ ⊗ |i⟩⟨i|
def 𝒞'(ρ) = Tr₂[V * (ρ ⊗ σ) * V†]

/-- Lemma 6: dilation catalyst does not correlate with an auxiliary system S' -/
lemma dilation_catalyst_correlates_not :
  TrS[(V ⊗ 1S') ρSS' ⊗ σ (V† ⊗ 1S')] = ρS' ⊗ σ
begin
  calc TrS[(V ⊗ 1S') ρSS' ⊗ σ (V† ⊗ 1S')] = TrS[ρSS' ⊗ σ] -- trace_unitary_invariant
                                      ... = ρS' ⊗ σ
end

Majorization

def dephasing_channel_in_eigenbasis [quantum_state ρ] : quantum_channel := sorry
notation `𝒟` ρ := dephasing_channel_in_eigenbasis ρ
-- 𝒟 ρ' [ρ] = ∑ i, |i⟩⟨i| ρ |i⟩⟨i|
-- where |i⟩ is orthonormal basis of ρ'

/-- Lemma 5: "a candidate catalyst using Lemma 4"
upper bound on dist b/w target and dephasing on k-th copy of S -/
lemma basic_lemma [H(ρ) < H(ρ')] {ε > 0} : 
∃ (n : ℕ) [unitary U], ∀ k ≤ n,
D(ρ', 𝒟 ρ' pTr_{1,..,n}\{k} (U * ρ^⊗n * U†))) ≤ ε
begin
  have : ∃ (n : ℕ) [quantum_state ρ'εn], ρ^⊗n ≽ ρ'εn ∧ D(ρ'^⊗n, ρ'εn) ≤ ε, { sorry },
    -- by Lemma 4 (uses H(ρ) < H(ρ'))

  -- Schur-Horn theorem: ∃ U, ρ'εn = 𝒟 ρ'^⊗n [χ]
  -- let k' := {1,...,n}\{k}
  have : 𝒟 ρ' [χₖ] = Trk' [ρ'εn], {
    -- By locality of quantum mechanics:
    calc 𝒟 ρ' [χₖ] = Trk'[(𝒟 ρ' ⊗ 1k')[χ]]
               ... = Trk'[(𝒟 ρ'^⊗n)[χ]]
               ... = Trk'[ρ'εn]
  },
  have : D(ρ', 𝒟 ρ' [χₖ]) ≤ ε, {
    calc D(ρ', 𝒟 ρ' [χₖ]) = D(ρ', Trk' [ρ'εn]) -- by this
                      ... ≤ D(ρ', ρ'εn)        -- nonincreasing under ptrace
                      ... ≤ D(ρ'^⊗n, ρ'εn)     -- nonincreasing under ptrace
                      ... ≤ ε                  -- Lemma 4
  },
end

consider more generally (ρ ρ’ : α →ₗ[ℂ] α).

when exists unitary from ρ to ρ’? when are they interconvertible?

what changes if we add the other axioms of quantum_state?

References