Generalized quantum Stein lemma
A source makes ρ or σ.
We want to know which.
We can ask the source to make arbitrarily many copies.
For n systems: ρ^⊗n or σ^⊗n.
But what if the source output depends on previous outputs?
So instead of σ^⊗n the source makes ωₙ..
-
Generalize the
σ^⊗n
in the original Quantum Stein lemma to an arbitary stateωₙ
.-
If the null hypothesis is an ergodic state, instead of i.i.d.
-
If the null and alternative hypotheses are correlated states.
-
If the alternative hypothesis is an arbitrary state. If the source
-
import POVM import Quantum_relative_entropy import Permutation_group variables (ℋ : Type) [complex_Hilbert_space ℋ] (ρ : ℋ →ₗ[ℂ] ℋ) [quantum_state ρ] class arbitrary_states (μ : Π n : ℕ, set ℋ^⊗n →ₗ[ℂ] ℋ^⊗n) := (quantum_states : ∀ n, ∀ ωₙ ∈ μ n, quantum_state ωₙ) (convex_μₙ : ∀ n, convex μ n) (closed_μₙ : ∀ n, closed μ n) (contains_full_rank_state : ∀ n, ∃ [quantum_state σ] [full_rank σ], σ^⊗n ∈ μ n) (closed_under_perm : ∀ n, ∀ π ∈ Sₙ, (P π) ρ (P π) ∈ ℳ n) (closed_under_ptrace : ∀ n, ∀ ρ ∈ ℳ(n+1), ∀ k ∈ {1,...,n+1}, trₖ(ρ) ∈ ℳ n) (closed_under_tensor_products : ∀ n m, ∀ ρ ∈ ℳ n, ∀ ν ∈ ℳ m, ρ ⊗ ν ∈ ℳ(n + m)) /- An example of such set is S(ℋ^⊗n) the set of k-partite separable states over ℋ^⊗n := ℋ₁^⊗n ⊗ ... ⊗ ℋₖ^⊗n. -/
variables (μ : Π n : ℕ, set ℋ^⊗n →ₗ[ℂ] ℋ^⊗n) [∀ n, arbitrary_states (μ n)] variable (n : ℕ) /-- Hypothesis test. Instance of POVM -/ def test (Aₙ : (ℋ^⊗n) →ₗ[ℂ] (ℋ^⊗n)) := 0 ≤ Aₙ ∧ Aₙ ≤ 1 variables (Aₙ : ℋ^⊗n →ₗ[ℂ] ℋ^⊗n) [test Aₙ]
/-- inf "distance" to states in ℳ -/ def Eℳ(ρ) := inf { quantum_relative_entropy ρ σ | σ ∈ ℳ } /-- Eℳ∞(ρ) is the number at the end of the sequence. -/ def Eℳ∞(ρ) := lim λ n, Eℳ(ρ^⊗n)/n /-- "Regularized relative entropy of entanglement" -/ def ER∞(ρ) := lim λ n, 1/n * min{quantum_relative_entropy ρ^⊗n σ | σ ∈ S(ℋ^⊗n)}
/-- Probability of guessing ρ^⊗n when actually ωₙ. -/ def α Aₙ := tr(Aₙ * ωₙ) /-- Probability of guessing σ^⊗n when actually ρ^⊗n. -/ def β := tr(ρ^⊗n * (1 - Aₙ)) /-- What is the minimum? -/ def min_α_if_β_leq_ε (ε > 0) := - log min { α Aₙ | Aₙ : ℋ^⊗n →ₗ[ℂ] ℋ^⊗n ∧ test Aₙ ∧ β Aₙ < ε }
/-- General quantum Stein lemma. This is theorem 1 here: https://arxiv.org/abs/0904.0281v3. -/ theorem theorem1_direct_part : ∀ε>0, ∃ (Aₙ : ℕ → (ℋ^⊗n →ₗ[ℂ] ℋ^⊗n)) [∀ n, test Aₙ n], lim λ n, β Aₙ = 0 ∧ ∀n, ∀ ωₙ ∈ ℳ n, - log α Aₙ / n + ε ≥ Eℳ∞(ρ) /-- If α > Eℳ∞ then "not only does β not go to zero but it actually goes to one." -/ theorem theorem1_strong_converse (ε > 0) (Aₙ : ℕ → (ℋ^⊗n →ₗ[ℂ] ℋ^⊗n)) [∀ n, test Aₙ n] : ∀n, ∀ ωₙ ∈ ℳ n, - log α Aₙ / n - ε ≥ Eℳ∞(ρ) → lim λ n, β Aₙ = 1 := begin sorry, end -- other possible phrasings theorem theorem1_direct' : ∀ ε > 0, ∀ δ > 0, ∃ k : ℕ, ∀ n > k, ∃ (Aₙ : ℋ^⊗n →ₗ[ℂ] ℋ^⊗n) [test Aₙ], ∀ ωₙ ∈ ℳ n, β Aₙ < ε ∧ - log α Aₙ / n ≥ E∞ℳ(ρ) - δ := begin sorry, end theorem theorem1_direct'' : ∀ ε > 0, ∀ δ > 0, ∃ k : ℕ, ∀ n > k, ∀ ωₙ ∈ ℳ n, - log min_α_if_β_leq_ε n ε / n > E∞ℳ(ρ) - δ := begin sorry, end /-- Compare with the statement of the original quantum Stein lemma. -/ lemma log_minimum_tends_to_quantum_relative_entropy_for_sufficiently_many_systems : ∀ ε > 0, lim λ n, log min_α_if_β_leq_ε n ε / n = - E∞ℳ(ρ) := begin -- follows from the stuff above splitting_tactic_here, sorry, end
Would be nice to prove because “implies whenever a multipartite state can be asymptotically converted into another entangled state by local operations and classical communication, the rate of conversion must be non-zero.”
lemma propIII1a {y : ℝ} : y > Eℳ∞(ρ) → lim λ n, min{tr(ρ^⊗n - 2^{yn} * ωₙ) | ωₙ ∈ ℳ n} = 0 := begin sorry, end lemma propIII1b {y : ℝ} : y < Eℳ∞(ρ) → lim λ n, min{tr(ρ^⊗n - 2^{yn} * ωₙ) | ωₙ ∈ ℳ n} = 1 := begin sorry, end
def tr₊(A) := min{tr Y | Y ≥ A ∧ Y ≥ 0} /-- Family of convex optimization problems -/ def γ {n : ℕ} (π : quantum_state) (K : ℝ) := max {tr(A π) | test Aₙ ∧ ∀ σ ∈ ℳ n, tr(A σ) ≤ 1/K} /- propIII1 -> theorem1 -/ The statement of theorem1 is implied by y > Eℳ∞(ρ) → lim λ n, γ ρ^⊗n 2^{yn} = 0 y < Eℳ∞(ρ) → lim λ n, γ ρ^⊗n 2^{yn} = 1. In order to see that this holds true: Show the problem is equal to its dual formulation From propIII1 we find lim λ n, γ ρ^⊗n 2^{yn} = 0. And from another simple argument we find lim λ n, γ ρ^⊗n 2^{yn} = 1.
/- Equation 122: ωₙ := 1/(1+τ) ωₙ' + τ/(1+τ) * σ^⊗(n-m-r) -/ variables [τ > 0] [ωₙ ...] /- Equation 115: πₙ := tr₁ tr₂ ... trᵣ trₑ (|Φ⟩⟨Φ| / ⟨φ|φ⟩) -/ variables [πₙ ...] variables [ν > 0] [λ = λnν ≥ quantum_relative_entropy(πₙ, ωₙ) + ν*n] lemma III9 : ∃ γ > 0, ∃ (l : ℕ → (ℋ →ₗ[ℂ] ℋ)) [∀ i, quantum_state l i], ∃ n, ∀ k > n, ∃ [quantum_state l] ≥ (l k), tr(πₙ⊗l - 2^{λnν} * ωₙ⊗l)+ ≤ 2^{-γ*n*l} := begin sorry, end
-
“To understand how the above result connects with asymptotic transformations of resource, look at quantum entanglement.”
-
“In entanglement theory ℳ corresponds to the set of separable states S.”
- Are these the “free states” of the theory?
-