Capacity for private classical communication
“Alice selects message m from set 𝓜 of messages.
Alice prepares some Quantum state ρA′ₘⁿ as input to many uses of the Quantum channel 𝒩_{A′→B}. And transmits it.”
ඌ ============ ₁ O
/|\ ⋮ /|\
============ ₙ
Output state:
𝒩_{A′ⁿ→Bⁿ}(ρA′ₘⁿ),
“Bob decodes Alice’s transmitted message m. With a POVM {Λₘ}.
-- probability of error
def pₑ(m) = Tr {(I − Λₘ) 𝒩_{A′ⁿ→Bⁿ}(ρA′ₘⁿ)},
-- maximal probability of error
def p∗ₑ := max m ∈ 𝓜 pₑ(m)
where p∗ₑ ≤ ε ∈ [0,1] for an (n,P,ε) code.
/-- code rate -/
def P := 1/n * log |𝓜|.
“Let U𝒩_{A′→BE} be an isometric extension of the channel 𝒩_{A′→B}.”
ඌ ============ ₁ O
/|\ ⋮ /|\
============ ₙ
\ \
\ ... \
\ \
Ɋ
/|\
Eve receives:
𝒩ᶜ_{A′→E}(σ) := TrB{U𝒩_{A′→BE}(σ)}.
/-- Eve’s state always close to constant state σEⁿ,
regardless of the message m Alice transmits. -/
def privacy (ε) : Prop :=
∀ m ∈ 𝓜, 1/2 * ‖ωEⁿₘ − σEⁿ‖₁ ≤ ε
import Quantum_channel variables (𝒩 : (ℋ₁ →ₗ[∁] ℋ₁) →ₗ[∁] (ℋ₂ →ₗ[∁] ℋ₂)) [quantum_channel 𝒩] /-- When can channel 𝒩 transmit at rate P? -/ def achievable_private_classical_comm_rate (P : ℝ) (𝒩) := ∀ (ε > 0) (δ > 0), ∃ k : ℕ, ∀ n ≥ k, ∃ private_classical_comm_code (n,P−δ,ε) /-- supremum of all achievable rates -/ def private_classical_capacity (𝒩) : ℝ := sup {P : ℝ | achievable_private_classical_comm_rate P 𝒩}
Private classical capacity of a channel is equal to its regularized private information